[ad_1]
Mao, N. et al. Future trends in synthetic biology in Asia. Adv. Gen. 2, e10038 (2021).
Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Cat. 2, 18–33 (2019).
Fortune Business Insights. Bio-Based Chemicals Market Size, Share & COVID-19 Impact Analysis, By Product Category, By Application and Regional Forecast, 2021-2028 https://www.fortunebusinessinsights.com/bio-based-chemicals-market-106586 (2022).
Intasian, P. et al. Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem. Rev. 121, 10367–10451 (2021).
Article
CAS
PubMed
Google Scholar
Jiang, W. et al. Metabolic engineering strategies to enable microbial utilization of c1 feedstocks. Nat. Chem. Biol. 17, 845–855 (2021).
Article
CAS
PubMed
Google Scholar
Galanie, S., Thodey, K., Trenchard, I. J., Filsinger Interrante, M. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095–1100 (2015).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Kim, H. M., Chae, T. U., Choi, S. Y., Kim, W. J. & Lee, S. Y. Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nat. Chem. Biol. 15, 721–729 (2019).
Article
CAS
PubMed
Google Scholar
Graham-Rowe, D. Agriculture: beyond food versus fuel. Nature 474, S6–S8 (2011).
Article
CAS
PubMed
Google Scholar
Francois, J. M., Alkim, C. & Morin, N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. Biotechnol. Biofuels 13, 118 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Pavan, M. et al. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab. Eng. 71, 117–141 (2022).
Article
CAS
PubMed
Google Scholar
Kaza, S. et al. A Global Snapshot of Solid Waste Management to 2050 https://openknowledge.worldbank.org/handle/10986/30317 (2018).
Park, G. W. et al. Recent progress and challenges in biological degradation and biotechnological valorization of lignin as an emerging source of bioenergy: a state-of-the-art review. Renew. Sustain. Energy Rev. 157, 112025 (2022).
Reshmy, R. et al. Microbial valorization of lignin: prospects and challenges. Bioresour. Technol. 344, 126240 (2022).
Article
CAS
PubMed
Google Scholar
Usmani, Z. et al. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresour. Technol. 346, 126444 (2022).
Article
CAS
PubMed
Google Scholar
Zotta, T., Solieri, L., Iacumin, L., Picozzi, C. & Gullo, M. Valorization of cheese whey using microbial fermentations. Appl. Microbiol. Biotechnol. 104, 2749–2764 (2020).
Article
CAS
PubMed
Google Scholar
Pan, F. D., Liu, S., Xu, Q. M., Chen, X. Y. & Cheng, J. S. Bioconversion of kitchen waste to surfactin via simultaneous enzymolysis and fermentation using mixed-culture of enzyme-producing fungi and Bacillus amyloliquefaciens hm618. Biochem. Eng. J. 172, 108036–108036 (2021).
Ravindran, R. & Jaiswal, A. K. Exploitation of food industry waste for high-value products. Trends Biotechnol 34, 58–69 (2016).
Article
CAS
PubMed
Google Scholar
Merino, D., Bertolacci, L., Paul, U. C., Simonutti, R. & Athanassiou, A. Avocado peels and seeds: Processing strategies for the development of highly antioxidant bioplastic films. ACS Appl. Mater. Interfaces 13, 38688–38699 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Dürre, P. & Eikmanns, B. J. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr. Opin. Biotechnol. 35, 63–72 (2015).
Liew, F. E. et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. Biotechnol. 40, 335–344 (2022).
Article
CAS
PubMed
Google Scholar
Venkata Mohan, S., Modestra, J. A., Amulya, K., Butti, S. K. & Velvizhi, G. A circular bioeconomy with biobased products from CO2 sequestration. Trends Biotechnol. 34, 506–519 (2016).
Article
CAS
PubMed
Google Scholar
IEA. CO2 Emissions in 2022 https://www.iea.org/reports/co2-emissions-in-2022 (2023).
Tollefson, J. Carbon emissions hit new high: warning from COP27. Nature https://doi.org/10.1038/d41586-022-03657-w (2022).
Qiao, W. et al. Challenges and opportunities in c1-based biomanufacturing. Bioresour. Technol. 364, 128095 (2022).
Article
CAS
PubMed
Google Scholar
Liang, F., Englund, E., Lindberg, P. & Lindblad, P. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Metab. Eng. 46, 51–59 (2018).
Article
CAS
PubMed
Google Scholar
Wei, L., Wang, Q., Xin, Y., Lu, Y. & Xu, J. Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of rubisco activase. Algal Res. 27, 366–375 (2017).
Antonovsky, N. et al. Sugar synthesis from CO2 in Escherichia coli. Cell 166, 115–125 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang, B., Zhao, Y. & Yang, J. Recent advances in developing artificial autotrophic microorganism for reinforcing CO2 fixation. Front. Microbiol. 11, 592631 (2020).
Article
PubMed
PubMed Central
Google Scholar
Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263.e12 (2019). This work produced a fully synthetic autotrophic E. coli that can generate biomass entirely from CO2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yishai, O., Lindner, S. N., Gonzalez de la Cruz, J., Tenenboim, H. & Bar-Even, A. The formate bio-economy. Curr. Opin. Chem. Biol. 35, 1–9 (2016).
Article
CAS
PubMed
Google Scholar
Gassler, T. et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat. Biotechnol. 38, 210–216 (2020). This work engineered the peroxisomal methanol-assimilation pathway of P. pastoris into a CO2-fixation pathway resembling the CBB cycle, allowing it to grow on CO2 as a sole carbon source.
Article
CAS
PubMed
Google Scholar
Baumschabl, M. et al. Conversion of CO2 into organic acids by engineered autotrophic yeast. Proc. Natl Acad. Sci. USA 119, e2211827119 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim, S. et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).
Article
CAS
PubMed
Google Scholar
Bang, J. & Lee, S. Y. Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc. Natl Acad. Sci. USA 115, E9271–E9279 (2018).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Molitor, B. et al. Carbon recovery by fermentation of co-rich off gases — turning steel mills into biorefineries. Bioresour. Technol. 215, 386–396 (2016).
Article
CAS
PubMed
Google Scholar
Köpke, M. et al. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl. Environ. Microbiol. 80, 3394–3403 (2014).
Article
ADS
PubMed
PubMed Central
Google Scholar
Köpke, M. et al. 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl. Environ. Microbiol. 77, 5467–5475 (2011).
Article
ADS
PubMed
PubMed Central
Google Scholar
de Souza Pinto Lemgruber, R. et al. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metab. Eng. 53, 14–23 (2019).
Jia, D. et al. Metabolic engineering of gas-fermenting Clostridium ljungdahlii for efficient co-production of isopropanol, 3-hydroxybutyrate, and ethanol. ACS Synth. Biol. 10, 2628–2638 (2021).
Article
CAS
PubMed
Google Scholar
Garg, S., Wu, H., Clomburg, J. M. & Bennett, G. N. Bioconversion of methane to c-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5gb1c. Metab. Eng. 48, 175–183 (2018).
Article
CAS
PubMed
Google Scholar
Nguyen, D. T. N. et al. Metabolic engineering of the type I methanotroph Methylomonas sp. Dh-1 for production of succinate from methane. Metab. Eng. 54, 170–179 (2019).
Article
CAS
PubMed
Google Scholar
Nguyen, T. T., Lee, O. K., Naizabekov, S. & Lee, E. Y. Bioconversion of methane to cadaverine and lysine using an engineered type II methanotroph, Methylosinus trichosporium ob3b. Green Chem. 22, 7803–7811 (2020).
Henard, C. A. et al. Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci. Rep. 6, 21585 (2016).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Nguyen, D. T. N. et al. Metabolic engineering of type II methanotroph, Methylosinus trichosporium ob3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway. Metab. Eng. 59, 142–150 (2020).
Article
CAS
PubMed
Google Scholar
Meyer, F. et al. Methanol-essential growth of Escherichia coli. Nat. Commun. 9, 1508 (2018).
Article
ADS
PubMed
PubMed Central
Google Scholar
Espinosa, M. I. et al. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat. Commun. 11, 5564 (2020).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Tuyishime, P. et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab. Eng. 49, 220–231 (2018).
Article
CAS
PubMed
Google Scholar
Kim, H. J. et al. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains. Nat. Cat. 2, 342–353 (2019).
Lin, M. T., Salihovic, H., Clark, F. K. & Hanson, M. R. Improving the efficiency of rubisco by resurrecting its ancestors in the family Solanaceae. Sci. Adv. 8, eabm6871 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett, R. K., Steinberg, L. M., Chen, W. & Papoutsakis, E. T. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr. Opin. Biotechnol. 50, 81–93 (2018).
Article
CAS
PubMed
Google Scholar
Lv, X. et al. C1-based biomanufacturing: advances, challenges and perspectives. Bioresour. Technol. 367, 128259 (2023).
Article
CAS
PubMed
Google Scholar
Zoghlami, A. & Paës, G. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front. Chem. 7, 874 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Panda, S. K. & Ray, R. C. In Environmental Microbial Biotechnology (eds Sukla, L. B., Pradhan, N., Panda, S. & Mishra, B. K.) 203-221 (Springer International Publishing, 2015).
Dahmen, N., Lewandowski, I., Zibek, S. & Weidtmann, A. Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives. Glob. Change Biol. Bioenergy 11, 107–117 (2019).
Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).
Article
CAS
PubMed
Google Scholar
Lin, L. et al. Systems biology-guided biodesign of consolidated lignin conversion. Green. Chem. 18, 5536–5547 (2016).
Brown, M. E. & Chang, M. C. Y. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 19, 1–7 (2014).
Article
CAS
PubMed
Google Scholar
Husaini, A., Fisol, F. A., Yun, L. C., Hussain, M. H. M. & Roslan, H. A. Lignocellulolytic enzymes produced by tropical white rot fungi during biopulping of Acacia mangium wood chips. J. Biochem. Technol. 3, 245–250 (2011).
Varman, A. M. et al. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proc. Natl Acad. Sci. USA 113, E5802–E5811 (2016).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu, W. et al. Lignin valorization: two hybrid biochemical routes for the conversion of polymeric lignin into value-added chemicals. Sci. Rep. 7, 8420 (2017).
Article
ADS
PubMed
PubMed Central
Google Scholar
Wu, W., Liu, F. & Singh, S. Toward engineering E. coli with an autoregulatory system for lignin valorization. Proc. Natl Acad. Sci. USA 115, 2970–2975 (2018).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Lo, T.-M. et al. Biosynthesis of commodity chemicals from oil palm empty fruit bunch lignin. Front. Microbiol. 12, 663642 (2021).
Article
PubMed
PubMed Central
Google Scholar
Lo, T.-M., Chng, S. H., Teo, W. S., Cho, H.-S. & Chang, M. W. A two-layer gene circuit for decoupling cell growth from metabolite production. Cell Syst. 3, 133–143 (2016). This work developed a smart-production system that utilizes a hydroxycinnamic acid biosensor to balance cell growth and biochemical production, demonstrating a generalizable engineering strategy for sustainable microbial-based biotransformation applications, particularly in lignin valorization.
Article
CAS
PubMed
Google Scholar
Xiong, W., Reyes, L. H., Michener, W. E., Maness, P.-C. & Chou, K. J. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously. Biotechnol. Bioeng. 115, 1755–1763 (2018).
Article
CAS
PubMed
Google Scholar
Cunha, J. T., Soares, P. O., Baptista, S. L., Costa, C. E. & Domingues, L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered 11, 883–903 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen, L. et al. Consolidated bioprocessing for cellulosic ethanol conversion by cellulase–xylanase cell-surfaced yeast consortium. Prep. Biochem. Biotechnol. 48, 653–661 (2018).
Article
ADS
CAS
PubMed
Google Scholar
Claes, A., Deparis, Q., Foulquié-Moreno, M. R. & Thevelein, J. M. Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates. Metab. Eng. 59, 131–141 (2020). This work created a single S. cerevisiae strain for the consolidated bioprocessing of lignocellulose waste, wherein the microorganism secretes lignocellulolytic enzymes, hydrolyzes polysaccharides into sugars, and ferments both hexose and pentose sugars.
Article
CAS
PubMed
Google Scholar
Chung, D., Cha, M., Guss, A. M. & Westpheling, J. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc. Natl Acad. Sci. USA 111, 8931–8936 (2014). This work demonstrated the growth of a thermophilic bacteria on untreated switchgrass, thus eliminating the need for costly pre-treatment and enzymatic hydrolysis of the waste.
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Hamilton-Brehm, S. D. et al. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl. Environ. Microbiol. 76, 1014–1020 (2010).
Article
ADS
CAS
PubMed
Google Scholar
Jönsson, L. J. & Martín, C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103–112 (2016).
Nouri, H., Moghimi, H., Marashi, S.-A. & Elahi, E. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses. PLoS One 15, e0240330 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun, L. et al. Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat. Commun. 12, 4975 (2021).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Shui, Z. X. et al. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl. Microbiol. Biotechnol. 99, 5739–5748 (2015).
Article
CAS
PubMed
Google Scholar
FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction https://www.fao.org/3/ca6030en/ca6030en.pdf (2019).
Forbes, H., Quested, T. & O’Connor, C. Food Waste Index Report 2021 https://wedocs.unep.org/bitstream/handle/20.500.11822/35280/FoodWaste.pdf (2021).
Jaglo, K., Kenny, S. & Stephenson, J. From Farm to Kitchen: The Environmental Impacts of U.S. Food Waste https://www.epa.gov/system/files/documents/2021-11/from-farm-to-kitchen-the-environmental-impacts-of-u.s.-food-waste_508-tagged.pdf (2021).
Paritosh, K. et al. Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed. Res. Int. 2017, 2370927 (2017).
Article
PubMed
PubMed Central
Google Scholar
Katami, T., Yasuhara, A. & Shibamoto, T. Formation of dioxins from incineration of foods found in domestic garbage. Environ. Sci. Technol. 38, 1062–1065 (2004).
Article
ADS
CAS
PubMed
Google Scholar
Rong, L. et al. Engineering Yarrowia lipolytica to produce itaconic acid from waste cooking oil. Front. Bioeng. Biotechnol. 10, 888869 (2022).
Article
PubMed
PubMed Central
Google Scholar
Fickers, P., Marty, A. & Nicaud, J. M. The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol. Adv. 29, 632–644 (2011).
Article
CAS
PubMed
Google Scholar
Ng, T.-K. et al. Engineering Yarrowia lipolytica towards food waste bioremediation: production of fatty acid ethyl esters from vegetable cooking oil. J. Biosci. Bioeng. 129, 31–40 (2020).
Article
CAS
PubMed
Google Scholar
Edwards, M. C. & Doran-Peterson, J. Pectin-rich biomass as feedstock for fuel ethanol production. Appl. Microbiol. Biotechnol. 95, 565–575 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Martins, L. C., Monteiro, C. C., Semedo, P. M. & Sá-Correia, I. Valorisation of pectin-rich agro-industrial residues by yeasts: potential and challenges. Appl. Microbiol. Biotechnol. 104, 6527–6547 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Protzko, R. J. et al. Engineering Saccharomyces cerevisiae for co-utilization of d-galacturonic acid and d-glucose from citrus peel waste. Nat. Commun. 9, 5059 (2018). This work demonstrated that the consumption of d-galacturonic acid, the primary sugar in the pectin-rich biomass, by yeast is inhibited by the presence of d-glucose. This inhibition can be rescued by using a dedicated d-galacturonic acid transporter, yielding a strain that can metabolize d-galacturonic acid for chemical production and d-glucose for improved redox balance.
Article
ADS
PubMed
PubMed Central
Google Scholar
Jeong, D., Ye, S., Park, H. & Kim, S. R. Simultaneous fermentation of galacturonic acid and five-carbon sugars by engineered Saccharomyces cerevisiae. Bioresour. Technol. 295, 122259 (2020).
Article
CAS
PubMed
Google Scholar
Satari, B. & Karimi, K. Citrus processing wastes: environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 129, 153–167 (2018).
Bier, M. C. J., Medeiros, A. B. P. & Soccol, C. R. Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media. Fungal Biol. 121, 137–144 (2017).
Article
CAS
PubMed
Google Scholar
Chubukov, V. et al. Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase ahpc. Appl. Environ. Microbiol. 81, 4690–4696 (2015).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Lad, B. C., Coleman, S. M. & Alper, H. S. Microbial valorization of underutilized and nonconventional waste streams. J. Ind. Microbiol. Biotechnol. 49, kuab056 (2022).
Article
CAS
PubMed
Google Scholar
Shi, J., Chen, Y., Liu, X. & Li, D. Rhamnolipid production from waste cooking oil using newly isolated halotolerant Pseudomonas aeruginosa m4. J. Clean. Prod. 278, 123879 (2021).
Wang, P. et al. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source. Biotechnol. Appl. Biochem. 67, 307–316 (2020).
Hu, Y., Wang, F. & Chi, Y. The evolution of microbial community during acclimation for high sodium food waste anaerobic digestion. Waste Biomass Valoriz. 11, 6057–6063 (2020).
Ritchie, H., Rosado, P. & Roser, M. Meat and Dairy Production. Our World in Data https://ourworldindata.org/meat-production (2017).
Kumar Awasthi, M. et al. Recent trends and developments on integrated biochemical conversion process for valorization of dairy waste to value added bioproducts: a review. Bioresour. Technol. 344, 126193 (2022).
Article
CAS
PubMed
Google Scholar
Da Silva, R. R. Keratinases as an alternative method designed to solve keratin disposal on the environment: its relevance on agricultural and environmental chemistry. J. Agric. Food Chem. 66, 7219–7221 (2018).
Siso, M. I. G. The biotechnological utilization of cheese whey: a review. Bioresour. Technol. 57, 1–11 (1996).
Mano, J., Liu, N., Hammond, J. H., Currie, D. H. & Stephanopoulos, G. Engineering Yarrowia lipolytica for the utilization of acid whey. Metab. Eng. 57, 43–50 (2020).
Article
CAS
PubMed
Google Scholar
Shen, J., Chen, J., Jensen, P. R. & Solem, C. Development of a novel, robust and cost-efficient process for valorizing dairy waste exemplified by ethanol production. Microb. Cell Fact. 18, 51 (2019).
Article
PubMed
PubMed Central
Google Scholar
Riedel, S. L. et al. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J. Biotechnol. 214, 119–127 (2015).
Article
CAS
PubMed
Google Scholar
Rodríguez G, J. E., Brojanigo, S., Basaglia, M., Favaro, L. & Casella, S. Efficient production of polyhydroxybutyrate from slaughterhouse waste using a recombinant strain of Cupriavidus necator dsm 545. Sci. Total. Environ. 794, 148754 (2021).
Article
ADS
PubMed
Google Scholar
Peng, Z., Mao, X., Zhang, J., Du, G. & Chen, J. Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis. Biotechnol. Biofuels 13, 61 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hassan, M. A. et al. Biochemical characterisation and application of keratinase from Bacillus thuringiensis MT1 to enable valorisation of hair wastes through biosynthesis of vitamin B-complex. Int. J. Biol. Macromol. 153, 561–572 (2020).
Article
CAS
PubMed
Google Scholar
Gong, J. S. et al. Efficient keratinase expression via promoter engineering strategies for degradation of feather wastes. Enzyme Microb. Technol. 137, 109550 (2020).
Article
CAS
PubMed
Google Scholar
Rajput, R., Tiwary, E., Sharma, R. & Gupta, R. Swapping of pro-sequences between keratinases of Bacillus licheniformis and Bacillus pumilus: altered substrate specificity and thermostability. Enzyme Microb. Technol. 51, 131–138 (2012).
Article
CAS
PubMed
Google Scholar
Jang, W. D., Kim, G. B., Kim, Y. & Lee, S. Y. Applications of artificial intelligence to enzyme and pathway design for metabolic engineering. Curr. Opin. Biotechnol. 73, 101–107 (2022).
Article
CAS
PubMed
Google Scholar
Guo, Y. et al. Structure- and computational-aided engineering of an oxidase to produce isoeugenol from a lignin-derived compound. Nat. Commun. 13, 7195 (2022).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Trott, O. & Olson, A. J. Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wijma, H. J. et al. Computationally designed libraries for rapid enzyme stabilization. Protein Eng. Des. Sel. 27, 49–58 (2014).
Article
CAS
PubMed
PubMed Central
Google Scholar
Ollikainen, N., de Jong, R. M. & Kortemme, T. Coupling protein side-chain and backbone flexibility improves the re-design of protein-ligand specificity. PLoS Comput. Biol. 11, e1004335 (2015).
Article
PubMed
PubMed Central
Google Scholar
Lu, H. et al. Machine learning-aided engineering of hydrolases for pet depolymerization. Nature 604, 662–667 (2022). This work employed structure-guided machine learning techniques to design thermostable enhanced variants of PET hydrolase that can operate at 50 °C, potentially enabling promising plastic waste recycling applications.
Article
ADS
CAS
PubMed
Google Scholar
Shroff, R. et al. Discovery of novel gain-of-function mutations guided by structure-based deep learning. ACS Synth. Biol. 9, 2927–2935 (2020).
Article
CAS
PubMed
Google Scholar
Delepine, B., Duigou, T., Carbonell, P. & Faulon, J. L. Retropath2.0: a retrosynthesis workflow for metabolic engineers. Metab. Eng. 45, 158–170 (2018).
Article
CAS
PubMed
Google Scholar
Duigou, T., du Lac, M., Carbonell, P. & Faulon, J. L. Retrorules: a database of reaction rules for engineering biology. Nucleic Acids Res. 47, D1229–D1235 (2019).
Koch, M., Duigou, T. & Faulon, J. L. Reinforcement learning for bioretrosynthesis. ACS Synth. Biol. 9, 157–168 (2020).
Article
CAS
PubMed
Google Scholar
Finnigan, W., Hepworth, L. J., Flitsch, S. L. & Turner, N. J. Retrobiocat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson, C. J. et al. Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers. Metab. Eng. 60, 168–182 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Probst, D. et al. Biocatalysed synthesis planning using data-driven learning. Nat. Commun. 13, 964 (2022).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 11, 3316–3325 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng, S. et al. Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP. Nat. Commun. 13, 3342 (2022).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Levin, I., Liu, M., Voigt, C. A. & Coley, C. W. Merging enzymatic and synthetic chemistry with computational synthesis planning. Nat. Commun. 13, 7747 (2022).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Cook, T. B. et al. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. J. Ind. Microbiol. Biotechnol. 45, 517–527 (2018).
Article
CAS
PubMed
Google Scholar
Sanford, P. A. & Woolston, B. M. Expanding the genetic engineering toolbox for the metabolically flexible acetogen Eubacterium limosum.J. Ind. Microbiol. Biotechnol. 49, kuac019 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Biggs, B. W. et al. Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1. Nucleic Acids Res. 48, 5169–5182 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bredeweg, E. L. et al. A molecular genetic toolbox for Yarrowia lipolytica. Biotechnol. Biofuels 10, 2 (2017).
Article
PubMed
PubMed Central
Google Scholar
Wong, L., Holdridge, B., Engel, J. & Xu, P. Genetic tools for streamlined and accelerated pathway engineering in Yarrowia lipolytica. Methods Mol. Biol. 1927, 155–177 (2019).
Article
CAS
PubMed
Google Scholar
DeLorenzo, D. M., Rottinghaus, A. G., Henson, W. R. & Moon, T. S. Molecular toolkit for gene expression control and genome modification in Rhodococcus opacus PD630. ACS Synth. Biol. 7, 727–738 (2018).
Article
CAS
PubMed
Google Scholar
Fischer, J. E. & Glieder, A. Current advances in engineering tools for Pichia pastoris. Curr. Opin. Biotechnol. 59, 175–181 (2019).
Article
CAS
PubMed
Google Scholar
Joseph, R. C., Kim, N. M. & Sandoval, N. R. Recent developments of the synthetic biology toolkit for Clostridium. Front. Microbiol. 9, 154 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022). This work extensively engineered P. putida and deployed the strain in a two-step process, involving a chemical-oxidation step and bacterial biotransformation step, that converts key components of consumer plastic wastes (for example, high-density polyethylene, polystyrene and PET) into valuable building blocks for biological production, paving the way for future plastic recycling applications.
Article
ADS
CAS
PubMed
Google Scholar
Zhao, Y. et al. High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica. Microb. Biotechnol. 14, 2497–2513 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Li, Y. et al. Reprogramming Escherichia coli metabolism for bioplastics synthesis from waste cooking oil. ACS Synth. Biol. 10, 1966–1979 (2021).
Article
CAS
PubMed
Google Scholar
Wang, G. et al. Crage enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat. Microbiol. 4, 2498–2510 (2019).
Fernandez-Bunster, G. & Pavez, P. Novel production methods of polyhydroxyalkanoates and their innovative uses in biomedicine and industry. Molecules 27, 8351 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki, Y. et al. Lignin valorization through efficient microbial production of β-ketoadipate from industrial black liquor. Bioresour. Technol. 337, 125489 (2021).
Article
CAS
PubMed
Google Scholar
Alvarez-Gonzalez, G. & Dixon, N. Genetically encoded biosensors for lignocellulose valorization. Biotechnol. Biofuels 12, 246 (2019).
Article
PubMed
PubMed Central
Google Scholar
Machado, L. F. & Dixon, N. Development and substrate specificity screening of an in vivo biosensor for the detection of biomass derived aromatic chemical building blocks. Chem. Commun. 52, 11402–11405 (2016).
Siedler, S. et al. Development of a bacterial biosensor for rapid screening of yeast p-coumaric acid production. ACS Synth. Biol. 6, 1860–1869 (2017).
Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutmann, F. et al. CRISPRi screens reveal genes modulating yeast growth in lignocellulose hydrolysate. Biotechnol. Biofuels 14, 41 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Camara, E., Lenitz, I. & Nygard, Y. A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6-12. Sci. Rep. 10, 14605 (2020).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
DeLorenzo, D. M., Diao, J., Carr, R., Hu, Y. & Moon, T. S. An improved CRISPR interference tool to engineer Rhodococcus opacus. ACS Synth. Biol. 10, 786–798 (2021).
Article
CAS
PubMed
Google Scholar
Henson, W. R. et al. Multi-omic elucidation of aromatic catabolism in adaptively evolved Rhodococcus opacus. Metab. Eng. 49, 69–83 (2018).
Article
CAS
PubMed
Google Scholar
Lam, F. H. et al. Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks.Sci. Adv. 7, eabf7613 (2021).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Pham, H. L. et al. Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat. Commun. 8, 411 (2017).
Article
ADS
PubMed
PubMed Central
Google Scholar
d’Oelsnitz, S. et al. Using fungible biosensors to evolve improved alkaloid biosyntheses. Nat. Chem. Biol. 18, 981–989 (2022). This work presented a generalizable approach to developing new biosensors from flexible transcription factor templates and applied them to the development of genetic circuit-based enzyme screening processes, which allowed the discovery of variants with novel substrate preferences.
Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248–252 (2018).
Article
ADS
CAS
PubMed
Google Scholar
Cravens, A., Jamil, O. K., Kong, D., Sockolosky, J. T. & Smolke, C. D. Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering. Nat. Commun. 12, 1579 (2021).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Vu, V. et al. Enhancement of the enzymatic hydrolysis efficiency of wheat bran using the Bacillus strains and their consortium. Bioresour. Technol. 343, 126092 (2022).
Article
CAS
PubMed
Google Scholar
Peng, X. et al. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat. Microbiol. 6, 499–511 (2021).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang, J. et al. Construction of a fungal consortium for effective degradation of rice straw lignin and potential application in bio-pulping. Bioresour. Technol. 344, 126168 (2022).
Article
CAS
PubMed
Google Scholar
Peng, Z., Mao, X., Zhang, J., Du, G. & Chen, J. Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microb. Cell Fact. 18, 84 (2019).
Article
PubMed
PubMed Central
Google Scholar
Qin, L. et al. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ. Sci. Pollut. Res. Int. 23, 8379–8387 (2016).
Article
CAS
PubMed
Google Scholar
Al-Wasify, R. S., Ali, M. N. & Hamed, S. R. Biodegradation of dairy wastewater using bacterial and fungal local isolates. Water Sci. Technol. 76, 3094–3100 (2017).
Article
CAS
PubMed
Google Scholar
Sindhu, R. et al. Valorization of food and kitchen waste: an integrated strategy adopted for the production of poly-3-hydroxybutyrate, bioethanol, pectinase and 2, 3-butanediol. Bioresour. Technol. 310, 123515 (2020).
Article
CAS
PubMed
Google Scholar
Wong, C. Y. et al. Valorization of exo-microbial fermented coconut endosperm waste by black soldier fly larvae for simultaneous biodiesel and protein productions. Environ. Res. 185, 109458 (2020).
Article
CAS
PubMed
Google Scholar
Li, C. et al. Syntrophic acetate-oxidizing microbial consortia enriched from full-scale mesophilic food waste anaerobic digesters showing high biodiversity and functional redundancy. mSystems 7, e0033922 (2022).
Wanapaisan, P. et al. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. J. Hazard. Mater. 342, 561–570 (2018).
Article
CAS
PubMed
Google Scholar
Yang, J. et al. Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil. Environ. Sci. Pollut. Res. Int. 25, 17645–17653 (2018).
Article
CAS
PubMed
Google Scholar
Chen, J. et al. Biochemical pathways and associated microbial process of di-2-ethyl hexyl phthalate (dehp) enhanced degradation by the immobilization technique in sequencing batch reactor. Environ. Technol. 43, 2899–2908 (2022).
Article
CAS
PubMed
Google Scholar
Zhang, L. et al. Degradation of phenylurea herbicides by a novel bacterial consortium containing synergistically catabolic species and functionally complementary hydrolases. J. Agric. Food Chem. 66, 12479–12489 (2018).
Article
ADS
CAS
PubMed
Google Scholar
Zhai, Y. et al. Detoxification of deoxynivalenol by a mixed culture of soil bacteria with 3-epi-deoxynivalenol as the main intermediate. Front. Microbiol. 10, 2172 (2019).
Article
PubMed
PubMed Central
Google Scholar
Yin, T. et al. A novel constructed carbonate-mineralized functional bacterial consortium for high-efficiency cadmium biomineralization. J. Hazard. Mater. 401, 123269 (2021).
Article
CAS
PubMed
Google Scholar
Cha, S. et al. Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals. Metab. Eng. 64, 146–153 (2021).
Article
CAS
PubMed
Google Scholar
Li, C., Zhu, X. & Angelidaki, I. Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia. Bioresour. Technol. 314, 123739 (2020).
Article
CAS
PubMed
Google Scholar
Lehtinen, T., Virtanen, H., Santala, S. & Santala, V. Production of alkanes from CO2 by engineered bacteria. Biotechnol. Biofuels 11, 228 (2018).
Article
PubMed
PubMed Central
Google Scholar
Park, H., Patel, A., Hunt, K. A., Henson, M. A. & Carlson, R. P. Artificial consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and biofuel synthesis. NPJ Biofilms Microbiomes 6, 59 (2020).
Article
CAS
PubMed
PubMed Central
Google Scholar
Senne de Oliveira Lino, F., Bajic, D., Vila, J. C. C., Sanchez, A. & Sommer, M. O. A. Complex yeast-bacteria interactions affect the yield of industrial ethanol fermentation. Nat. Commun. 12, 1498 (2021).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Kong, W., Meldgin, D. R., Collins, J. J. & Lu, T. Designing microbial consortia with defined social interactions. Nat. Chem. Biol. 14, 821–829 (2018).
Article
CAS
PubMed
Google Scholar
Li, X. et al. Design of stable and self-regulated microbial consortia for chemical synthesis. Nat. Commun. 13, 1554 (2022).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Kang, C. W. et al. Circuit-guided population acclimation of a synthetic microbial consortium for improved biochemical production. Nat. Commun. 13, 6506 (2022). This work demonstrated the design of a smart bioproduction microbial consortia consisting of Vibrio sp. Dhg and E. coli. E. coli was engineered with a ‘population guider’ circuit, which regulates antibiotic degradation to implement a synthetic cooperation relationship, leading to optimal growth balance and improved bio-production titres in the engineered consortia compared to simple consortia consisting of natural strains.
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Clomburg, J. M., Crumbley, A. M. & Gonzalez, R. Industrial biomanufacturing: the future of chemical production. Science 355, aag0804 (2017).
Fei, Q. et al. Biological valorization of natural gas for the production of lactic acid: techno-economic analysis and life cycle assessment. Biochem. Eng. J. 158, 107500 (2020).
Rajendran, N. & Han, J. Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels. Bioresour. Technol. 348, 126796 (2022).
Article
CAS
PubMed
Google Scholar
Crater, J. S. & Lievense, J. C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett. 365, fny138 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wehrs, M. et al. Engineering robust production microbes for large-scale cultivation. Trends Microbiol. 27, 524–537 (2019).
Article
CAS
PubMed
Google Scholar
Cui, S. et al. Multilayer genetic circuits for dynamic regulation of metabolic pathways. ACS Synth. Biol. 10, 1587–1597 (2021).
Article
CAS
PubMed
Google Scholar
Moser, F. et al. Genetic circuit performance under conditions relevant for industrial bioreactors. ACS Synth. Biol. 1, 555–564 (2012).
Article
CAS
PubMed
PubMed Central
Google Scholar
Pantoja Angles, A., Valle-Pérez, A. U., Hauser, C. & Mahfouz, M. M. Microbial biocontainment systems for clinical, agricultural, and industrial applications. Front. Bioeng. Biotechnol. 10, 830200 (2022).
Article
PubMed
PubMed Central
Google Scholar
Arnolds, K. L. et al. Biotechnology for secure biocontainment designs in an emerging bioeconomy. Curr. Opin. Biotechnol. 71, 25–31 (2021).
Article
CAS
PubMed
Google Scholar
Bing, R. G. et al. Fermentative conversion of unpretreated plant biomass: a thermophilic threshold for indigenous microbial growth. Bioresour. Technol. 367, 128275 (2023).
Article
CAS
PubMed
Google Scholar
de Morais, M. B., Barbosa-Neto, A. G., Willadino, L., Ulisses, C. & Calsa Junior, T. Salt stress induces increase in starch accumulation in duckweed (Lemna aequinoctialis, Lemnaceae): biochemical and physiological aspects. J. Plant Growth Regul. 38, 683–700 (2019).
Aikawa, S. et al. Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnol. Biofuels 7, 88 (2014).
Article
PubMed
PubMed Central
Google Scholar
Selvarajoo, K. The need for integrated systems biology approaches for biotechnological applications. Biotechnol. Notes 2, 39–43 (2021).
Calero, P. & Nikel, P. I. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb. Biotechnol. 12, 98–124 (2019).
Article
CAS
PubMed
Google Scholar
El-Sharoud, W. M., Zalma, S. A., Rios-Solis, L. & Ledesma-Amaro, R. Over-expression of α-bisabolene by metabolic engineering of Yarrowia lipolytica employing a golden gate DNA assembly toolbox. Biotechnol. Notes 4, 14–19 (2023).
Lu, J. et al. Model-based dynamic engineering of Escherichia coli for n-acetylglucosamine overproduction. Biotechnol. Notes 3, 15–24 (2022).
Kadisch, M., Willrodt, C., Hillen, M., Bühler, B. & Schmid, A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol. J. 12, 1600170 (2017).
Caspeta, L. et al. Altered sterol composition renders yeast thermotolerant. Science 346, 75–78 (2014).
Article
ADS
CAS
PubMed
Google Scholar
Wang, W. et al. Genome shuffling enhances stress tolerance of Zymomonas mobilis to two inhibitors. Biotechnol. Biofuels 12, 288 (2019).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuroda, K. et al. Critical roles of the pentose phosphate pathway and GLN3 in isobutanol-specific tolerance in yeast. Cell Syst. 9, 534–547.e5 (2019).
Article
CAS
PubMed
Google Scholar
Deatherage, D. E. et al. Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates. Nucleic Acids Res. 46, 9236–9250 (2018).
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao, Y., Bowen, C. H., Liu, D. & Zhang, F. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat. Chem. Biol. 12, 339–344 (2016).
Article
CAS
PubMed
Google Scholar
Krink, N., Löchner, A. C., Cooper, H., Beisel, C. L. & Di Ventura, B. Synthetic biology landscape and community in Germany. Biotechnol. Notes 3, 8–14 (2022).
Donati, S. et al. Synthetic biology in Europe: current community landscape and future perspectives. Biotechnol. Notes 3, 54–61 (2022).
Trisrivirat, D., Tinikul, R. & Chaiyen, P. Synthetic microbes and biocatalyst designs in Thailand. Biotechnol. Notes 4, 28–40 (2023).
[ad_2]
This article was originally published by a www.nature.com . Read the Original article here.