Microbial engineering strategies to utilize waste feedstock for sustainable bioproduction –

[ad_1]

Mao, N. et al. Future trends in synthetic biology in Asia. Adv. Gen. 2, e10038 (2021).

Article 

Google Scholar
 

Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Cat. 2, 18–33 (2019).

Article 
CAS 

Google Scholar
 

Fortune Business Insights. Bio-Based Chemicals Market Size, Share & COVID-19 Impact Analysis, By Product Category, By Application and Regional Forecast, 2021-2028 https://www.fortunebusinessinsights.com/bio-based-chemicals-market-106586 (2022).

Intasian, P. et al. Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem. Rev. 121, 10367–10451 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Jiang, W. et al. Metabolic engineering strategies to enable microbial utilization of c1 feedstocks. Nat. Chem. Biol. 17, 845–855 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Galanie, S., Thodey, K., Trenchard, I. J., Filsinger Interrante, M. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095–1100 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kim, H. M., Chae, T. U., Choi, S. Y., Kim, W. J. & Lee, S. Y. Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nat. Chem. Biol. 15, 721–729 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Graham-Rowe, D. Agriculture: beyond food versus fuel. Nature 474, S6–S8 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Francois, J. M., Alkim, C. & Morin, N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. Biotechnol. Biofuels 13, 118 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pavan, M. et al. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab. Eng. 71, 117–141 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Kaza, S. et al. A Global Snapshot of Solid Waste Management to 2050 https://openknowledge.worldbank.org/handle/10986/30317 (2018).

Park, G. W. et al. Recent progress and challenges in biological degradation and biotechnological valorization of lignin as an emerging source of bioenergy: a state-of-the-art review. Renew. Sustain. Energy Rev. 157, 112025 (2022).

Article 
CAS 

Google Scholar
 

Reshmy, R. et al. Microbial valorization of lignin: prospects and challenges. Bioresour. Technol. 344, 126240 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Usmani, Z. et al. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresour. Technol. 346, 126444 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Zotta, T., Solieri, L., Iacumin, L., Picozzi, C. & Gullo, M. Valorization of cheese whey using microbial fermentations. Appl. Microbiol. Biotechnol. 104, 2749–2764 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Pan, F. D., Liu, S., Xu, Q. M., Chen, X. Y. & Cheng, J. S. Bioconversion of kitchen waste to surfactin via simultaneous enzymolysis and fermentation using mixed-culture of enzyme-producing fungi and Bacillus amyloliquefaciens hm618. Biochem. Eng. J. 172, 108036–108036 (2021).

Article 
CAS 

Google Scholar
 

Ravindran, R. & Jaiswal, A. K. Exploitation of food industry waste for high-value products. Trends Biotechnol 34, 58–69 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Merino, D., Bertolacci, L., Paul, U. C., Simonutti, R. & Athanassiou, A. Avocado peels and seeds: Processing strategies for the development of highly antioxidant bioplastic films. ACS Appl. Mater. Interfaces 13, 38688–38699 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dürre, P. & Eikmanns, B. J. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr. Opin. Biotechnol. 35, 63–72 (2015).

Article 
PubMed 

Google Scholar
 

Liew, F. E. et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. Biotechnol. 40, 335–344 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Venkata Mohan, S., Modestra, J. A., Amulya, K., Butti, S. K. & Velvizhi, G. A circular bioeconomy with biobased products from CO2 sequestration. Trends Biotechnol. 34, 506–519 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

IEA. CO2 Emissions in 2022 https://www.iea.org/reports/co2-emissions-in-2022 (2023).

Tollefson, J. Carbon emissions hit new high: warning from COP27. Nature https://doi.org/10.1038/d41586-022-03657-w (2022).

Qiao, W. et al. Challenges and opportunities in c1-based biomanufacturing. Bioresour. Technol. 364, 128095 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Liang, F., Englund, E., Lindberg, P. & Lindblad, P. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Metab. Eng. 46, 51–59 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Wei, L., Wang, Q., Xin, Y., Lu, Y. & Xu, J. Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of rubisco activase. Algal Res. 27, 366–375 (2017).

Article 

Google Scholar
 

Antonovsky, N. et al. Sugar synthesis from CO2 in Escherichia coli. Cell 166, 115–125 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liang, B., Zhao, Y. & Yang, J. Recent advances in developing artificial autotrophic microorganism for reinforcing CO2 fixation. Front. Microbiol. 11, 592631 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263.e12 (2019). This work produced a fully synthetic autotrophic E. coli that can generate biomass entirely from CO2.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yishai, O., Lindner, S. N., Gonzalez de la Cruz, J., Tenenboim, H. & Bar-Even, A. The formate bio-economy. Curr. Opin. Chem. Biol. 35, 1–9 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Gassler, T. et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat. Biotechnol. 38, 210–216 (2020). This work engineered the peroxisomal methanol-assimilation pathway of P. pastoris into a CO2-fixation pathway resembling the CBB cycle, allowing it to grow on CO2 as a sole carbon source.

Article 
CAS 
PubMed 

Google Scholar
 

Baumschabl, M. et al. Conversion of CO2 into organic acids by engineered autotrophic yeast. Proc. Natl Acad. Sci. USA 119, e2211827119 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kim, S. et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Bang, J. & Lee, S. Y. Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc. Natl Acad. Sci. USA 115, E9271–E9279 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Molitor, B. et al. Carbon recovery by fermentation of co-rich off gases — turning steel mills into biorefineries. Bioresour. Technol. 215, 386–396 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Köpke, M. et al. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl. Environ. Microbiol. 80, 3394–3403 (2014).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Köpke, M. et al. 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl. Environ. Microbiol. 77, 5467–5475 (2011).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

de Souza Pinto Lemgruber, R. et al. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metab. Eng. 53, 14–23 (2019).

Article 
PubMed 

Google Scholar
 

Jia, D. et al. Metabolic engineering of gas-fermenting Clostridium ljungdahlii for efficient co-production of isopropanol, 3-hydroxybutyrate, and ethanol. ACS Synth. Biol. 10, 2628–2638 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Garg, S., Wu, H., Clomburg, J. M. & Bennett, G. N. Bioconversion of methane to c-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5gb1c. Metab. Eng. 48, 175–183 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Nguyen, D. T. N. et al. Metabolic engineering of the type I methanotroph Methylomonas sp. Dh-1 for production of succinate from methane. Metab. Eng. 54, 170–179 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Nguyen, T. T., Lee, O. K., Naizabekov, S. & Lee, E. Y. Bioconversion of methane to cadaverine and lysine using an engineered type II methanotroph, Methylosinus trichosporium ob3b. Green Chem. 22, 7803–7811 (2020).

Article 
CAS 

Google Scholar
 

Henard, C. A. et al. Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci. Rep. 6, 21585 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nguyen, D. T. N. et al. Metabolic engineering of type II methanotroph, Methylosinus trichosporium ob3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway. Metab. Eng. 59, 142–150 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Meyer, F. et al. Methanol-essential growth of Escherichia coli. Nat. Commun. 9, 1508 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Espinosa, M. I. et al. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat. Commun. 11, 5564 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tuyishime, P. et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab. Eng. 49, 220–231 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Kim, H. J. et al. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains. Nat. Cat. 2, 342–353 (2019).

Article 
CAS 

Google Scholar
 

Lin, M. T., Salihovic, H., Clark, F. K. & Hanson, M. R. Improving the efficiency of rubisco by resurrecting its ancestors in the family Solanaceae. Sci. Adv. 8, eabm6871 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bennett, R. K., Steinberg, L. M., Chen, W. & Papoutsakis, E. T. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Curr. Opin. Biotechnol. 50, 81–93 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Lv, X. et al. C1-based biomanufacturing: advances, challenges and perspectives. Bioresour. Technol. 367, 128259 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Zoghlami, A. & Paës, G. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front. Chem. 7, 874 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Panda, S. K. & Ray, R. C. In Environmental Microbial Biotechnology (eds Sukla, L. B., Pradhan, N., Panda, S. & Mishra, B. K.) 203-221 (Springer International Publishing, 2015).

Dahmen, N., Lewandowski, I., Zibek, S. & Weidtmann, A. Integrated lignocellulosic value chains in a growing bioeconomy: status quo and perspectives. Glob. Change Biol. Bioenergy 11, 107–117 (2019).

Article 

Google Scholar
 

Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Lin, L. et al. Systems biology-guided biodesign of consolidated lignin conversion. Green. Chem. 18, 5536–5547 (2016).

Article 
CAS 

Google Scholar
 

Brown, M. E. & Chang, M. C. Y. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 19, 1–7 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Husaini, A., Fisol, F. A., Yun, L. C., Hussain, M. H. M. & Roslan, H. A. Lignocellulolytic enzymes produced by tropical white rot fungi during biopulping of Acacia mangium wood chips. J. Biochem. Technol. 3, 245–250 (2011).

CAS 

Google Scholar
 

Varman, A. M. et al. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proc. Natl Acad. Sci. USA 113, E5802–E5811 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, W. et al. Lignin valorization: two hybrid biochemical routes for the conversion of polymeric lignin into value-added chemicals. Sci. Rep. 7, 8420 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wu, W., Liu, F. & Singh, S. Toward engineering E. coli with an autoregulatory system for lignin valorization. Proc. Natl Acad. Sci. USA 115, 2970–2975 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lo, T.-M. et al. Biosynthesis of commodity chemicals from oil palm empty fruit bunch lignin. Front. Microbiol. 12, 663642 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lo, T.-M., Chng, S. H., Teo, W. S., Cho, H.-S. & Chang, M. W. A two-layer gene circuit for decoupling cell growth from metabolite production. Cell Syst. 3, 133–143 (2016). This work developed a smart-production system that utilizes a hydroxycinnamic acid biosensor to balance cell growth and biochemical production, demonstrating a generalizable engineering strategy for sustainable microbial-based biotransformation applications, particularly in lignin valorization.

Article 
CAS 
PubMed 

Google Scholar
 

Xiong, W., Reyes, L. H., Michener, W. E., Maness, P.-C. & Chou, K. J. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously. Biotechnol. Bioeng. 115, 1755–1763 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Cunha, J. T., Soares, P. O., Baptista, S. L., Costa, C. E. & Domingues, L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered 11, 883–903 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, L. et al. Consolidated bioprocessing for cellulosic ethanol conversion by cellulase–xylanase cell-surfaced yeast consortium. Prep. Biochem. Biotechnol. 48, 653–661 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Claes, A., Deparis, Q., Foulquié-Moreno, M. R. & Thevelein, J. M. Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates. Metab. Eng. 59, 131–141 (2020). This work created a single S. cerevisiae strain for the consolidated bioprocessing of lignocellulose waste, wherein the microorganism secretes lignocellulolytic enzymes, hydrolyzes polysaccharides into sugars, and ferments both hexose and pentose sugars.

Article 
CAS 
PubMed 

Google Scholar
 

Chung, D., Cha, M., Guss, A. M. & Westpheling, J. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc. Natl Acad. Sci. USA 111, 8931–8936 (2014). This work demonstrated the growth of a thermophilic bacteria on untreated switchgrass, thus eliminating the need for costly pre-treatment and enzymatic hydrolysis of the waste.

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hamilton-Brehm, S. D. et al. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl. Environ. Microbiol. 76, 1014–1020 (2010).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jönsson, L. J. & Martín, C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199, 103–112 (2016).

Article 
PubMed 

Google Scholar
 

Nouri, H., Moghimi, H., Marashi, S.-A. & Elahi, E. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses. PLoS One 15, e0240330 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sun, L. et al. Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat. Commun. 12, 4975 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shui, Z. X. et al. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl. Microbiol. Biotechnol. 99, 5739–5748 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction https://www.fao.org/3/ca6030en/ca6030en.pdf (2019).

Forbes, H., Quested, T. & O’Connor, C. Food Waste Index Report 2021 https://wedocs.unep.org/bitstream/handle/20.500.11822/35280/FoodWaste.pdf (2021).

Jaglo, K., Kenny, S. & Stephenson, J. From Farm to Kitchen: The Environmental Impacts of U.S. Food Waste https://www.epa.gov/system/files/documents/2021-11/from-farm-to-kitchen-the-environmental-impacts-of-u.s.-food-waste_508-tagged.pdf (2021).

Paritosh, K. et al. Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed. Res. Int. 2017, 2370927 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Katami, T., Yasuhara, A. & Shibamoto, T. Formation of dioxins from incineration of foods found in domestic garbage. Environ. Sci. Technol. 38, 1062–1065 (2004).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Rong, L. et al. Engineering Yarrowia lipolytica to produce itaconic acid from waste cooking oil. Front. Bioeng. Biotechnol. 10, 888869 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fickers, P., Marty, A. & Nicaud, J. M. The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol. Adv. 29, 632–644 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Ng, T.-K. et al. Engineering Yarrowia lipolytica towards food waste bioremediation: production of fatty acid ethyl esters from vegetable cooking oil. J. Biosci. Bioeng. 129, 31–40 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Edwards, M. C. & Doran-Peterson, J. Pectin-rich biomass as feedstock for fuel ethanol production. Appl. Microbiol. Biotechnol. 95, 565–575 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martins, L. C., Monteiro, C. C., Semedo, P. M. & Sá-Correia, I. Valorisation of pectin-rich agro-industrial residues by yeasts: potential and challenges. Appl. Microbiol. Biotechnol. 104, 6527–6547 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Protzko, R. J. et al. Engineering Saccharomyces cerevisiae for co-utilization of d-galacturonic acid and d-glucose from citrus peel waste. Nat. Commun. 9, 5059 (2018). This work demonstrated that the consumption of d-galacturonic acid, the primary sugar in the pectin-rich biomass, by yeast is inhibited by the presence of d-glucose. This inhibition can be rescued by using a dedicated d-galacturonic acid transporter, yielding a strain that can metabolize d-galacturonic acid for chemical production and d-glucose for improved redox balance.

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Jeong, D., Ye, S., Park, H. & Kim, S. R. Simultaneous fermentation of galacturonic acid and five-carbon sugars by engineered Saccharomyces cerevisiae. Bioresour. Technol. 295, 122259 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Satari, B. & Karimi, K. Citrus processing wastes: environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 129, 153–167 (2018).

Article 

Google Scholar
 

Bier, M. C. J., Medeiros, A. B. P. & Soccol, C. R. Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media. Fungal Biol. 121, 137–144 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Chubukov, V. et al. Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase ahpc. Appl. Environ. Microbiol. 81, 4690–4696 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lad, B. C., Coleman, S. M. & Alper, H. S. Microbial valorization of underutilized and nonconventional waste streams. J. Ind. Microbiol. Biotechnol. 49, kuab056 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Shi, J., Chen, Y., Liu, X. & Li, D. Rhamnolipid production from waste cooking oil using newly isolated halotolerant Pseudomonas aeruginosa m4. J. Clean. Prod. 278, 123879 (2021).

Article 
CAS 

Google Scholar
 

Wang, P. et al. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source. Biotechnol. Appl. Biochem. 67, 307–316 (2020).

CAS 
PubMed 

Google Scholar
 

Hu, Y., Wang, F. & Chi, Y. The evolution of microbial community during acclimation for high sodium food waste anaerobic digestion. Waste Biomass Valoriz. 11, 6057–6063 (2020).

Article 
CAS 

Google Scholar
 

Ritchie, H., Rosado, P. & Roser, M. Meat and Dairy Production. Our World in Data https://ourworldindata.org/meat-production (2017).

Kumar Awasthi, M. et al. Recent trends and developments on integrated biochemical conversion process for valorization of dairy waste to value added bioproducts: a review. Bioresour. Technol. 344, 126193 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Da Silva, R. R. Keratinases as an alternative method designed to solve keratin disposal on the environment: its relevance on agricultural and environmental chemistry. J. Agric. Food Chem. 66, 7219–7221 (2018).

Article 
PubMed 

Google Scholar
 

Siso, M. I. G. The biotechnological utilization of cheese whey: a review. Bioresour. Technol. 57, 1–11 (1996).

Article 

Google Scholar
 

Mano, J., Liu, N., Hammond, J. H., Currie, D. H. & Stephanopoulos, G. Engineering Yarrowia lipolytica for the utilization of acid whey. Metab. Eng. 57, 43–50 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Shen, J., Chen, J., Jensen, P. R. & Solem, C. Development of a novel, robust and cost-efficient process for valorizing dairy waste exemplified by ethanol production. Microb. Cell Fact. 18, 51 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Riedel, S. L. et al. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J. Biotechnol. 214, 119–127 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Rodríguez G, J. E., Brojanigo, S., Basaglia, M., Favaro, L. & Casella, S. Efficient production of polyhydroxybutyrate from slaughterhouse waste using a recombinant strain of Cupriavidus necator dsm 545. Sci. Total. Environ. 794, 148754 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Peng, Z., Mao, X., Zhang, J., Du, G. & Chen, J. Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis. Biotechnol. Biofuels 13, 61 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hassan, M. A. et al. Biochemical characterisation and application of keratinase from Bacillus thuringiensis MT1 to enable valorisation of hair wastes through biosynthesis of vitamin B-complex. Int. J. Biol. Macromol. 153, 561–572 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Gong, J. S. et al. Efficient keratinase expression via promoter engineering strategies for degradation of feather wastes. Enzyme Microb. Technol. 137, 109550 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Rajput, R., Tiwary, E., Sharma, R. & Gupta, R. Swapping of pro-sequences between keratinases of Bacillus licheniformis and Bacillus pumilus: altered substrate specificity and thermostability. Enzyme Microb. Technol. 51, 131–138 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Jang, W. D., Kim, G. B., Kim, Y. & Lee, S. Y. Applications of artificial intelligence to enzyme and pathway design for metabolic engineering. Curr. Opin. Biotechnol. 73, 101–107 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Guo, Y. et al. Structure- and computational-aided engineering of an oxidase to produce isoeugenol from a lignin-derived compound. Nat. Commun. 13, 7195 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Trott, O. & Olson, A. J. Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wijma, H. J. et al. Computationally designed libraries for rapid enzyme stabilization. Protein Eng. Des. Sel. 27, 49–58 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ollikainen, N., de Jong, R. M. & Kortemme, T. Coupling protein side-chain and backbone flexibility improves the re-design of protein-ligand specificity. PLoS Comput. Biol. 11, e1004335 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lu, H. et al. Machine learning-aided engineering of hydrolases for pet depolymerization. Nature 604, 662–667 (2022). This work employed structure-guided machine learning techniques to design thermostable enhanced variants of PET hydrolase that can operate at 50 °C, potentially enabling promising plastic waste recycling applications.

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Shroff, R. et al. Discovery of novel gain-of-function mutations guided by structure-based deep learning. ACS Synth. Biol. 9, 2927–2935 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Delepine, B., Duigou, T., Carbonell, P. & Faulon, J. L. Retropath2.0: a retrosynthesis workflow for metabolic engineers. Metab. Eng. 45, 158–170 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Duigou, T., du Lac, M., Carbonell, P. & Faulon, J. L. Retrorules: a database of reaction rules for engineering biology. Nucleic Acids Res. 47, D1229–D1235 (2019).

Article 
PubMed 

Google Scholar
 

Koch, M., Duigou, T. & Faulon, J. L. Reinforcement learning for bioretrosynthesis. ACS Synth. Biol. 9, 157–168 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Finnigan, W., Hepworth, L. J., Flitsch, S. L. & Turner, N. J. Retrobiocat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Robinson, C. J. et al. Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers. Metab. Eng. 60, 168–182 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Probst, D. et al. Biocatalysed synthesis planning using data-driven learning. Nat. Commun. 13, 964 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 11, 3316–3325 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zheng, S. et al. Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP. Nat. Commun. 13, 3342 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Levin, I., Liu, M., Voigt, C. A. & Coley, C. W. Merging enzymatic and synthetic chemistry with computational synthesis planning. Nat. Commun. 13, 7747 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cook, T. B. et al. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. J. Ind. Microbiol. Biotechnol. 45, 517–527 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Sanford, P. A. & Woolston, B. M. Expanding the genetic engineering toolbox for the metabolically flexible acetogen Eubacterium limosum.J. Ind. Microbiol. Biotechnol. 49, kuac019 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Biggs, B. W. et al. Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1. Nucleic Acids Res. 48, 5169–5182 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bredeweg, E. L. et al. A molecular genetic toolbox for Yarrowia lipolytica. Biotechnol. Biofuels 10, 2 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wong, L., Holdridge, B., Engel, J. & Xu, P. Genetic tools for streamlined and accelerated pathway engineering in Yarrowia lipolytica. Methods Mol. Biol. 1927, 155–177 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

DeLorenzo, D. M., Rottinghaus, A. G., Henson, W. R. & Moon, T. S. Molecular toolkit for gene expression control and genome modification in Rhodococcus opacus PD630. ACS Synth. Biol. 7, 727–738 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Fischer, J. E. & Glieder, A. Current advances in engineering tools for Pichia pastoris. Curr. Opin. Biotechnol. 59, 175–181 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Joseph, R. C., Kim, N. M. & Sandoval, N. R. Recent developments of the synthetic biology toolkit for Clostridium. Front. Microbiol. 9, 154 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022). This work extensively engineered P. putida and deployed the strain in a two-step process, involving a chemical-oxidation step and bacterial biotransformation step, that converts key components of consumer plastic wastes (for example, high-density polyethylene, polystyrene and PET) into valuable building blocks for biological production, paving the way for future plastic recycling applications.

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhao, Y. et al. High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica. Microb. Biotechnol. 14, 2497–2513 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, Y. et al. Reprogramming Escherichia coli metabolism for bioplastics synthesis from waste cooking oil. ACS Synth. Biol. 10, 1966–1979 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, G. et al. Crage enables rapid activation of biosynthetic gene clusters in undomesticated bacteria. Nat. Microbiol. 4, 2498–2510 (2019).

Article 
PubMed 

Google Scholar
 

Fernandez-Bunster, G. & Pavez, P. Novel production methods of polyhydroxyalkanoates and their innovative uses in biomedicine and industry. Molecules 27, 8351 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Suzuki, Y. et al. Lignin valorization through efficient microbial production of β-ketoadipate from industrial black liquor. Bioresour. Technol. 337, 125489 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Alvarez-Gonzalez, G. & Dixon, N. Genetically encoded biosensors for lignocellulose valorization. Biotechnol. Biofuels 12, 246 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Machado, L. F. & Dixon, N. Development and substrate specificity screening of an in vivo biosensor for the detection of biomass derived aromatic chemical building blocks. Chem. Commun. 52, 11402–11405 (2016).

Article 
CAS 

Google Scholar
 

Siedler, S. et al. Development of a bacterial biosensor for rapid screening of yeast p-coumaric acid production. ACS Synth. Biol. 6, 1860–1869 (2017).

Article 
PubMed 

Google Scholar
 

Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gutmann, F. et al. CRISPRi screens reveal genes modulating yeast growth in lignocellulose hydrolysate. Biotechnol. Biofuels 14, 41 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Camara, E., Lenitz, I. & Nygard, Y. A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6-12. Sci. Rep. 10, 14605 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

DeLorenzo, D. M., Diao, J., Carr, R., Hu, Y. & Moon, T. S. An improved CRISPR interference tool to engineer Rhodococcus opacus. ACS Synth. Biol. 10, 786–798 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Henson, W. R. et al. Multi-omic elucidation of aromatic catabolism in adaptively evolved Rhodococcus opacus. Metab. Eng. 49, 69–83 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Lam, F. H. et al. Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks.Sci. Adv. 7, eabf7613 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pham, H. L. et al. Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat. Commun. 8, 411 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

d’Oelsnitz, S. et al. Using fungible biosensors to evolve improved alkaloid biosyntheses. Nat. Chem. Biol. 18, 981–989 (2022). This work presented a generalizable approach to developing new biosensors from flexible transcription factor templates and applied them to the development of genetic circuit-based enzyme screening processes, which allowed the discovery of variants with novel substrate preferences.

Article 
PubMed 

Google Scholar
 

Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248–252 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Cravens, A., Jamil, O. K., Kong, D., Sockolosky, J. T. & Smolke, C. D. Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering. Nat. Commun. 12, 1579 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vu, V. et al. Enhancement of the enzymatic hydrolysis efficiency of wheat bran using the Bacillus strains and their consortium. Bioresour. Technol. 343, 126092 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Peng, X. et al. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat. Microbiol. 6, 499–511 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, J. et al. Construction of a fungal consortium for effective degradation of rice straw lignin and potential application in bio-pulping. Bioresour. Technol. 344, 126168 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Peng, Z., Mao, X., Zhang, J., Du, G. & Chen, J. Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains. Microb. Cell Fact. 18, 84 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Qin, L. et al. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ. Sci. Pollut. Res. Int. 23, 8379–8387 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Al-Wasify, R. S., Ali, M. N. & Hamed, S. R. Biodegradation of dairy wastewater using bacterial and fungal local isolates. Water Sci. Technol. 76, 3094–3100 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Sindhu, R. et al. Valorization of food and kitchen waste: an integrated strategy adopted for the production of poly-3-hydroxybutyrate, bioethanol, pectinase and 2, 3-butanediol. Bioresour. Technol. 310, 123515 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Wong, C. Y. et al. Valorization of exo-microbial fermented coconut endosperm waste by black soldier fly larvae for simultaneous biodiesel and protein productions. Environ. Res. 185, 109458 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Li, C. et al. Syntrophic acetate-oxidizing microbial consortia enriched from full-scale mesophilic food waste anaerobic digesters showing high biodiversity and functional redundancy. mSystems 7, e0033922 (2022).

Article 
PubMed 

Google Scholar
 

Wanapaisan, P. et al. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. J. Hazard. Mater. 342, 561–570 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Yang, J. et al. Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil. Environ. Sci. Pollut. Res. Int. 25, 17645–17653 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Chen, J. et al. Biochemical pathways and associated microbial process of di-2-ethyl hexyl phthalate (dehp) enhanced degradation by the immobilization technique in sequencing batch reactor. Environ. Technol. 43, 2899–2908 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, L. et al. Degradation of phenylurea herbicides by a novel bacterial consortium containing synergistically catabolic species and functionally complementary hydrolases. J. Agric. Food Chem. 66, 12479–12489 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhai, Y. et al. Detoxification of deoxynivalenol by a mixed culture of soil bacteria with 3-epi-deoxynivalenol as the main intermediate. Front. Microbiol. 10, 2172 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yin, T. et al. A novel constructed carbonate-mineralized functional bacterial consortium for high-efficiency cadmium biomineralization. J. Hazard. Mater. 401, 123269 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Cha, S. et al. Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals. Metab. Eng. 64, 146–153 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Li, C., Zhu, X. & Angelidaki, I. Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia. Bioresour. Technol. 314, 123739 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Lehtinen, T., Virtanen, H., Santala, S. & Santala, V. Production of alkanes from CO2 by engineered bacteria. Biotechnol. Biofuels 11, 228 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Park, H., Patel, A., Hunt, K. A., Henson, M. A. & Carlson, R. P. Artificial consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and biofuel synthesis. NPJ Biofilms Microbiomes 6, 59 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Senne de Oliveira Lino, F., Bajic, D., Vila, J. C. C., Sanchez, A. & Sommer, M. O. A. Complex yeast-bacteria interactions affect the yield of industrial ethanol fermentation. Nat. Commun. 12, 1498 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kong, W., Meldgin, D. R., Collins, J. J. & Lu, T. Designing microbial consortia with defined social interactions. Nat. Chem. Biol. 14, 821–829 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Li, X. et al. Design of stable and self-regulated microbial consortia for chemical synthesis. Nat. Commun. 13, 1554 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kang, C. W. et al. Circuit-guided population acclimation of a synthetic microbial consortium for improved biochemical production. Nat. Commun. 13, 6506 (2022). This work demonstrated the design of a smart bioproduction microbial consortia consisting of Vibrio sp. Dhg and E. coli. E. coli was engineered with a ‘population guider’ circuit, which regulates antibiotic degradation to implement a synthetic cooperation relationship, leading to optimal growth balance and improved bio-production titres in the engineered consortia compared to simple consortia consisting of natural strains.

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Clomburg, J. M., Crumbley, A. M. & Gonzalez, R. Industrial biomanufacturing: the future of chemical production. Science 355, aag0804 (2017).

Article 
PubMed 

Google Scholar
 

Fei, Q. et al. Biological valorization of natural gas for the production of lactic acid: techno-economic analysis and life cycle assessment. Biochem. Eng. J. 158, 107500 (2020).

Article 
CAS 

Google Scholar
 

Rajendran, N. & Han, J. Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels. Bioresour. Technol. 348, 126796 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Crater, J. S. & Lievense, J. C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett. 365, fny138 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wehrs, M. et al. Engineering robust production microbes for large-scale cultivation. Trends Microbiol. 27, 524–537 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Cui, S. et al. Multilayer genetic circuits for dynamic regulation of metabolic pathways. ACS Synth. Biol. 10, 1587–1597 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Moser, F. et al. Genetic circuit performance under conditions relevant for industrial bioreactors. ACS Synth. Biol. 1, 555–564 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pantoja Angles, A., Valle-Pérez, A. U., Hauser, C. & Mahfouz, M. M. Microbial biocontainment systems for clinical, agricultural, and industrial applications. Front. Bioeng. Biotechnol. 10, 830200 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Arnolds, K. L. et al. Biotechnology for secure biocontainment designs in an emerging bioeconomy. Curr. Opin. Biotechnol. 71, 25–31 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Bing, R. G. et al. Fermentative conversion of unpretreated plant biomass: a thermophilic threshold for indigenous microbial growth. Bioresour. Technol. 367, 128275 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

de Morais, M. B., Barbosa-Neto, A. G., Willadino, L., Ulisses, C. & Calsa Junior, T. Salt stress induces increase in starch accumulation in duckweed (Lemna aequinoctialis, Lemnaceae): biochemical and physiological aspects. J. Plant Growth Regul. 38, 683–700 (2019).

Article 

Google Scholar
 

Aikawa, S. et al. Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnol. Biofuels 7, 88 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Selvarajoo, K. The need for integrated systems biology approaches for biotechnological applications. Biotechnol. Notes 2, 39–43 (2021).

Article 
CAS 

Google Scholar
 

Calero, P. & Nikel, P. I. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb. Biotechnol. 12, 98–124 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

El-Sharoud, W. M., Zalma, S. A., Rios-Solis, L. & Ledesma-Amaro, R. Over-expression of α-bisabolene by metabolic engineering of Yarrowia lipolytica employing a golden gate DNA assembly toolbox. Biotechnol. Notes 4, 14–19 (2023).

Article 
CAS 

Google Scholar
 

Lu, J. et al. Model-based dynamic engineering of Escherichia coli for n-acetylglucosamine overproduction. Biotechnol. Notes 3, 15–24 (2022).

Article 
CAS 

Google Scholar
 

Kadisch, M., Willrodt, C., Hillen, M., Bühler, B. & Schmid, A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol. J. 12, 1600170 (2017).

Article 

Google Scholar
 

Caspeta, L. et al. Altered sterol composition renders yeast thermotolerant. Science 346, 75–78 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wang, W. et al. Genome shuffling enhances stress tolerance of Zymomonas mobilis to two inhibitors. Biotechnol. Biofuels 12, 288 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kuroda, K. et al. Critical roles of the pentose phosphate pathway and GLN3 in isobutanol-specific tolerance in yeast. Cell Syst. 9, 534–547.e5 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Deatherage, D. E. et al. Directed evolution of Escherichia coli with lower-than-natural plasmid mutation rates. Nucleic Acids Res. 46, 9236–9250 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xiao, Y., Bowen, C. H., Liu, D. & Zhang, F. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat. Chem. Biol. 12, 339–344 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Krink, N., Löchner, A. C., Cooper, H., Beisel, C. L. & Di Ventura, B. Synthetic biology landscape and community in Germany. Biotechnol. Notes 3, 8–14 (2022).

Article 

Google Scholar
 

Donati, S. et al. Synthetic biology in Europe: current community landscape and future perspectives. Biotechnol. Notes 3, 54–61 (2022).

Article 

Google Scholar
 

Trisrivirat, D., Tinikul, R. & Chaiyen, P. Synthetic microbes and biocatalyst designs in Thailand. Biotechnol. Notes 4, 28–40 (2023).

Article 
CAS 

Google Scholar
 

[ad_2]

This article was originally published by a www.nature.com . Read the Original article here.

More Articles

Sign Up For A FREE Wellness Coaching Session!